Scheduling Shared Continuous Resources on Many-Cores

Andre Brinkmann, Peter Kling, Friedhelm Meyer Auf der Heide, Lars Nagel, Sören Riechers and Tim Süs

Abstract: We consider the problem of scheduling a number of jobs on m identical processors sharing a continuously divisible resource. Each job jcomes with a resource requirement rj∈[0,1]. The job can be processed at full speed if granted its full resource requirement. If receiving only an x-portion of r_j, it is processed at an x-fraction of the full speed. Our goal is to find a resource assignment that minimizes the makespan (i.e., the latest completion time). Variants of such problems, relating the resource assignment of jobs to their processing speeds, have been studied under the term discrete-continuous scheduling. Known results are either very pessimistic or heuristic in nature.

In this paper, we suggest and analyze a slightly simplified model. It focuses on the assignment of shared continuous resources to the processors. The job assignment to processors and the ordering of the jobs have already been fixed. It is shown that, even for unit size jobs, finding an optimal solution is NP-hard if the number of processors is part of the input. Positive results for unit size jobs include an efficient optimal algorithm for 2 processors. Moreover, we prove that balanced schedules yield a 2-1/m-approximation for a fixed number of processors. Such schedules are computed by our GreedyBalance algorithm, for which the bound is tight.

Guest: Sören Riechers, Universität Paderborn, https://www.hni.uni-paderborn.de/alg/mitarbeiter/soerenri/

Host: Yvonne-Anne Pignolet

Leave a Reply

Your email address will not be published.

163,424 Spam Comments Blocked so far by Spam Free Wordpress

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>