In-Network Analytics for Ubiquitous Sensing

Ittay Eyal, Idit Keidar, Stacy Patterson, and Raphi Rom

Abstract: We address the problem of in-network analytics for data that is generated by sensors at the edge of the network. Specifically, we consider the problem of summarizing a continuous physical phenomenon, such as temperature or pollution, over a geographic region like a road network. Samples are collected by sensors placed alongside roads as well as in cars driving along them. We divide the region into sectors with a summary for each sector, so that their union is a continuous function that minimizes some global error function. We designate a node (either virtual or physical) that is responsible for estimating the function in each sector. Each node computes its estimate based on the samples taken in its sector and information from adjacent nodes. The algorithm works in networks with bounded, yet unknown, latencies. It accommodates the addition and removal of samples and the arrival and departure of nodes, and it converges to a globally optimal solution using only pairwise message exchanges between neighbors. The algorithm relies on a weakly-fair scheduler to implement these pairwise exchanges, and we present an implementation of such a scheduler. Our scheduler, which may be of independent interest, is locally quiescent, meaning that it only sends messages when required by the algorithm. It achieves quiescence on every link where the algorithm ceases to schedule pairwise exchanges; in particular, if the algorithm converges, it globally quiesces.

Guest: Stacy Patterson

Host: Stefan Schmid

Leave a Reply

Your email address will not be published.

163,962 Spam Comments Blocked so far by Spam Free Wordpress

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>